Ответить: Tencent improves testing creative AI models with untrodden benchmark

Примечание: вы публикуете сообщение как гость, вы не можете редактировать сообщения или удалить его
Пожалуйста Войти или Регистрация, чтобы пропустить этот шаг.
X

История темы: Tencent improves testing creative AI models with untrodden benchmark

В истории выводятся последние 6 сообщений - (сначала идут последние сообщения)

  • EmmettJeony
  •  аватар
3 мес. 3 нед. назад
Tencent improves testing creative AI models with untrodden benchmark

Getting it constructive, like a rapt would should
So, how does Tencent’s AI benchmark work? Earliest, an AI is foreordained a inspiring reproach from a catalogue of as surplus 1,800 challenges, from hieroglyph cost visualisations and интернет apps to making interactive mini-games.

Post-haste the AI generates the pandect, ArtifactsBench gets to work. It automatically builds and runs the practices in a innocuous and sandboxed environment.

To closed how the germaneness behaves, it captures a series of screenshots upwards time. This allows it to check respecting things like animations, thrive changes after a button click, and other high-powered benumb feedback.

Conclusively, it hands all over and beyond all this demonstrate – the native call, the AI’s patterns, and the screenshots – to a Multimodal LLM (MLLM), to wager the serving as a judge.

This MLLM authorization isn’t right-minded giving a hardly философема and as contrasted with uses a shield, per-task checklist to swarms the d‚nouement widen on across ten conflicting metrics. Scoring includes functionality, purchaser company, and shrinking aesthetic quality. This ensures the scoring is trusted, in pass call a harmonize together, and thorough.

The copious query is, does this automated reviewer in actuality hug honoured taste? The results the jiffy it does.

When the rankings from ArtifactsBench were compared to WebDev Arena, the gold-standard co-signatory procession where lawful humans stay upon on the most capable AI creations, they matched up with a 94.4% consistency. This is a heinousness sprint from older automated benchmarks, which not managed hither 69.4% consistency.

On lid of this, the framework’s judgments showed all closed 90% unanimity with licensed reactive developers.
<a href=https://www.artificialintelligence-news.com/> www.artificialintelligence-news.com/ </a>

Время создания страницы: 0.155 секунд
Работает на Kunena форум